

Graph Algorithms with MapReduce \$4230 Jay Urbain, Ph.D.

Credits:

- •MapReduce: The Definitive Guide, Tom White
- •Jeffery Dean and Sanjay Chemawat. MapRecuce
- •Jimmy Lin and Chris Dyer. *Data Intensive Text Processing with MapReduce*

Today's Topics

- Introduction to graph algorithms and graph representations
- Single Source Shortest Path (SSSP) problem
 - Refresher: Dijkstra's algorithm
 - Breadth-First Search with MapReduce
- PageRank

What's a graph?

- G = (V,E), where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information
- Different types of graphs:
 - Directed vs. undirected edges
 - Presence or absence of cycles
- Graphs are everywhere:
 - Hyperlink structure of the Web
 - Physical structure of computers on the Internet
 - Interstate highway system
 - Social networks

Some Graph Problems

- Finding shortest paths
 - Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
 - Telco laying down optical fiber
- Finding Max Flow
 - Airline scheduling
- Identify "special" nodes and communities
 - Breaking up terrorist cells, spread of avian flu
- Bipartite matching
 - Monster.com, Match.com
- PageRank, HITS, EdgeRank

Graphs and MapReduce

- Graph algorithms typically involve:
 - Performing computation at each node
 - Processing node-specific data, edge-specific data, and link structure
 - Traversing the graph in some manner
- Key questions:
 - How do you represent graph data in MapReduce?
 - How do you traverse a graph in MapReduce?

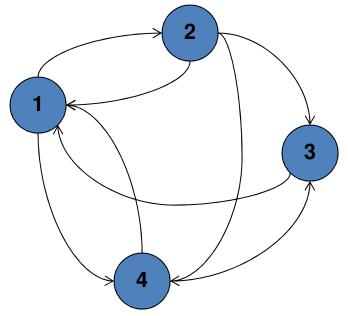
Representation Graphs

- G = (V, E)
 - A poor representation for computational purposes
- Two common representations
 - Adjacency matrix
 - Adjacency list

Adjacency Matrices

- Represent a graph as an n x n square matrix M
 - -n = |V|
 - $-M_{ij} = 1$ means a link from node i to j

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	0	1	0	0
4	1	0	1	0



Adjacency Matrices: Critique

- Advantages:
 - Naturally encapsulates iteration over nodes
 - Rows and columns correspond to inlinks and outlinks
- Disadvantages:
 - Lots of zeros for sparse matrices
 - Lots of wasted space

Adjacency Lists

- Take adjacency matrices... and throw away all the zeros
- Represent only outlinks from a node

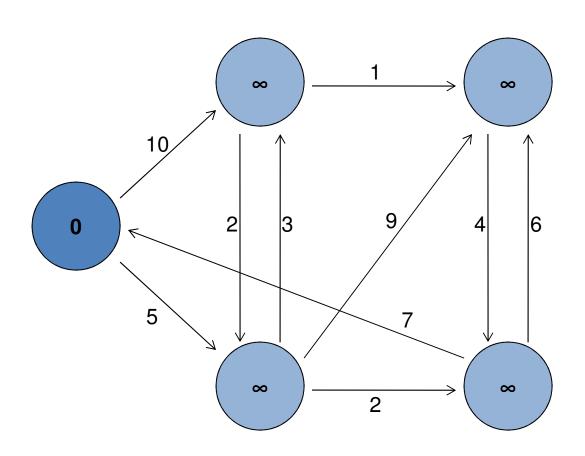
		1	2	3	4	1: 2, 4
	1	0	1	0	1	2: 1, 3, 4
	2	1	0	1	1	3: 1
	3	0	1	0	0	4: 1, 3
Ī	4	1	0	1	0	

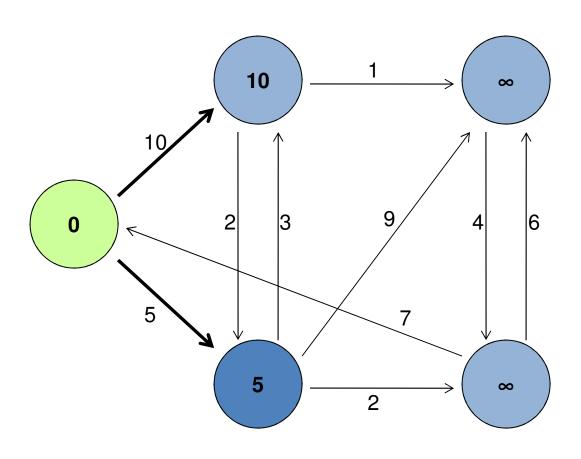
Adjacency Lists: Critique

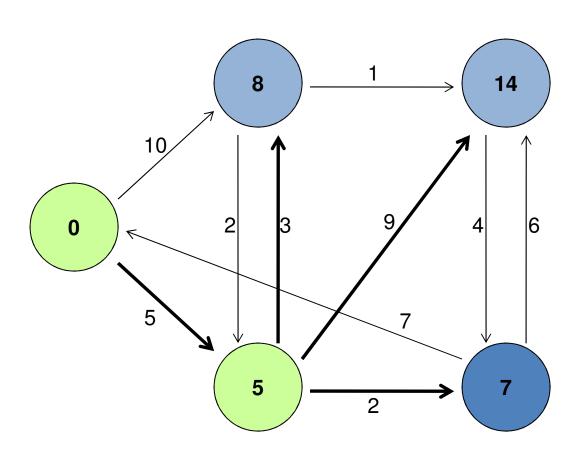
- Advantages:
 - Much more compact representation
 - Easy to compute over out-links
 - Graph structure can be broken up and distributed
- Disadvantages:
 - More difficult to compute over in-links

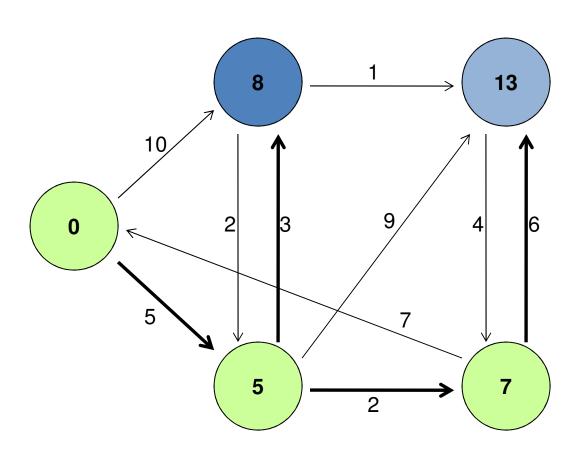
Single Source Shortest Path

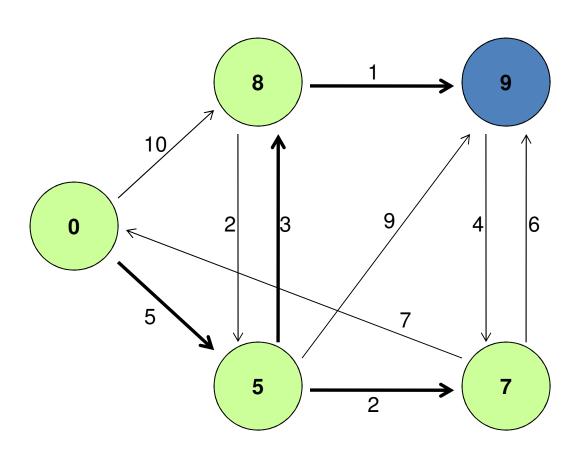
- Problem: find shortest path from a source node to one or more target nodes
- First, a refresher: Dijkstra's Algorithm

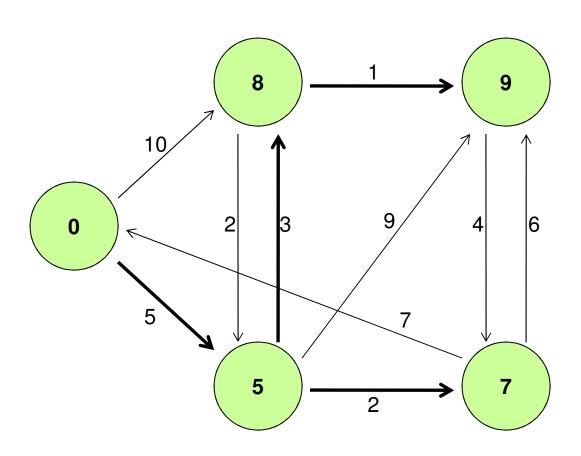












Single Source Shortest Path

- Problem: find shortest path from a source node to one or more target nodes
- Single processor machine: Dijkstra's Algorithm
- MapReduce: parallel Breadth-First Search (BFS)

Finding the Shortest Path

- First, consider equal edge weights
- Solution to the problem can be defined inductively
- Here's the intuition:
 - DistanceTo(startNode) = 0
 - For all nodes n directly reachable from startNode, DistanceTo(n) = 1
 - For all nodes n reachable from some other set of nodes S,
 DistanceTo(n) = 1 + min(DistanceTo(m), m ∈ S)

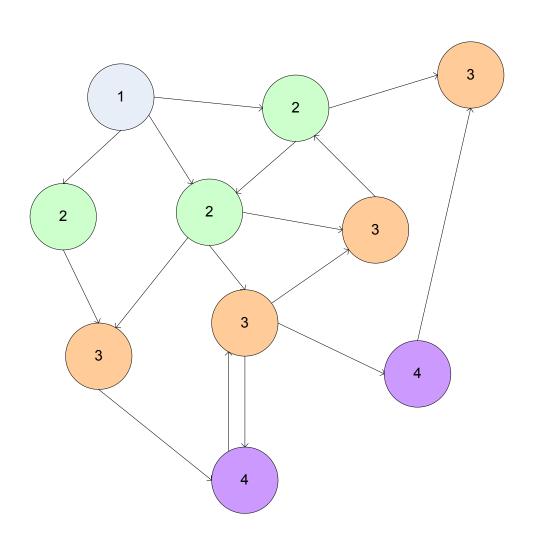
From Intuition to Algorithm

- A map task receives
 - Key: node n
 - Value: D (distance from start), points-to (list of nodes reachable from n)
- $\forall p \in \text{points-to: emit } (p, D+1)$
- The reduce task gathers possible distances to a given p and selects the minimum one

Multiple Iterations Needed

- This MapReduce task advances the "known frontier" by one hop
 - Subsequent iterations include more reachable nodes as frontier advances
 - Multiple iterations are needed to explore entire graph
 - Feed output back into the same MapReduce task
- Preserving graph structure:
 - Problem: Where did the points-to list go?
 - Solution: Mapper emits (n, points-to) as well

Visualizing Parallel BFS



Termination

- Does the algorithm ever terminate?
 - Eventually, all nodes will be discovered, all edges will be considered (in a connected graph)
- When do we stop?

Weighted Edges

- Now add positive weights to the edges
- Simple change: points-to list in map task includes a weight w for each pointed-to node
 - emit $(p, D+w_p)$ instead of (p, D+1) for each node p
- Does this ever terminate?
 - Yes! Eventually, no better distances will be found. When distance is the same, we stop
 - Mapper should emit (n, D) to ensure that "current distance" is carried into the reducer

```
Graph
    a: b, c
    b: c, d
  c:
    d:
    e:
Mapper ( a, (0, (b,c)))
      Emit( b, (1, (c,d)))
      Emit( c, (1, ()))
Reducer (b, (1, (c,d)))
      (b,1) < -min(b,1)
      output(b, (1, (c,d)))
Reducer (c, (1, ())
      (c,1) <- \min(c,1)
      output(c, (1, ()))
```

```
Mapper (b, (1, (c,d)))
      Emit( c, (2, ()))
     Emit( d, (2, ()))
Reducer (c, (2, ()))
      (c,1)<-\min(c,2)
     // no output
Reducer (d, (2, ()))
     // no output
     (d,1) <- \min(d,2)
     // no output
```

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
 - At any step it only pursues edges from the minimum-cost path inside the frontier
- MapReduce explores all paths in parallel
 - Divide and conquer
 - Throw more hardware at the problem!

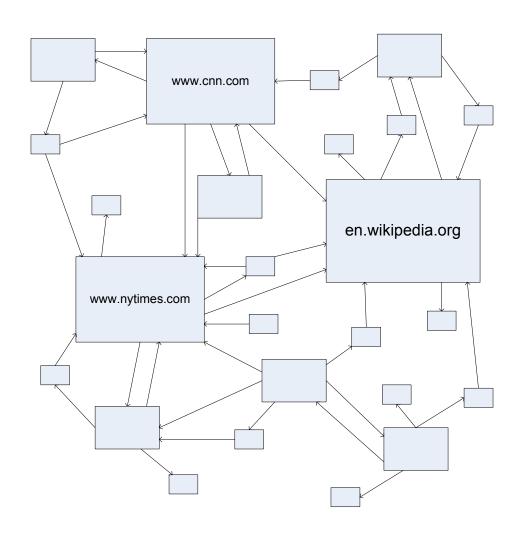
General Approach

- MapReduce is adept at manipulating graphs
 - Store graphs as adjacency lists
- Graph algorithms with MapReduce:
 - Each map task receives a node and its outlinks
 - Map task compute some function of the link structure, emits value with target as the key
 - Reduce task collects keys (target nodes) and aggregates
- Iterate multiple MapReduce cycles until some termination condition:
 - Remember to "pass" graph structure from one iteration to next

Random Walks Over the Web

- Model:
 - User starts at a random Web page
 - User randomly clicks on links, surfing from page to page
- What's the amount of time that will be spent on any given page?
- This is PageRank

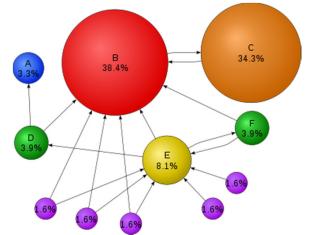
PageRank: Visually



PageRank

- Initially developed at Stanford University by Google founders,
 Larry Page and Sergey Brin, in 1995.
- Program implemented by Google to rank any type of recursive "documents" using MapReduce.
- Led to a functional prototype named Google in 1998.

 Still provides an important function for Google's web search tools.



PageRank

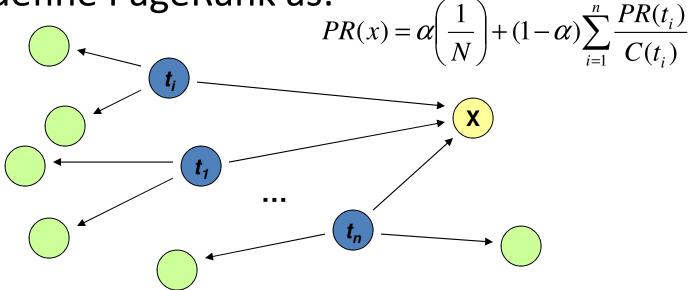
- Assume a small universe of four web pages: A, B, C and D. The initial approximation of PageRank would be evenly divided between these four documents.
- Each document would begin with an estimated PageRank of 0.25.
- If the only links in the system were from pages **B**, **C**, and **D** to **A**, each link would transfer 0.25 PageRank to **A** upon the next iteration, for a total of 0.75.

$$PR(A) = PR(B) + PR(C) + PR(D).$$

PageRank: Defined

- Given page x with in-bound links $t_1...t_n$, where
 - -C(t) is the out-degree of t
 - $-\alpha$ is probability of random jump
 - N is the total number of nodes in the graph

We can define PageRank as:



PageRank

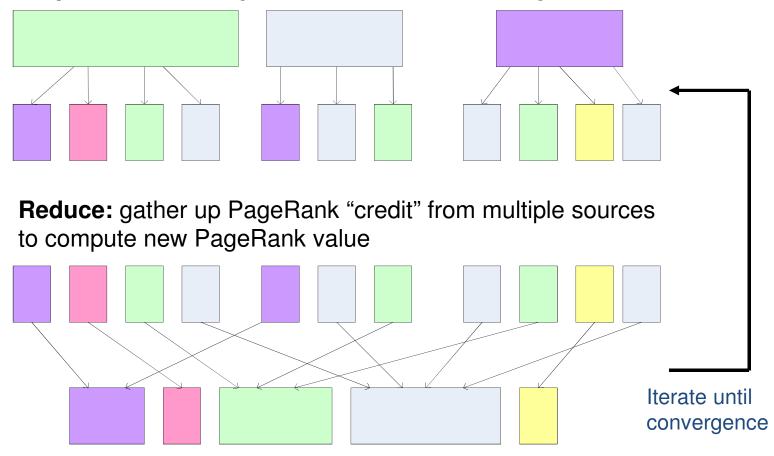
- Simulates a "random-surfer"
- Begins with pair (URL, list-of-URLs)
- Maps to (URL, (PR, list-of-URLs))
- Maps again taking above data, and for each u in list-of-URLs returns (u, PR/|list-of-URLs|), as well as (u, new-list-of-URLs)
- Reduce receives (URL, list-of-URLs), and many (URL, value)
 pairs and calculates (URL, (new-PR, list-of-URLs))

Computing PageRank

- Properties of PageRank
 - Can be computed iteratively
 - Effects at each iteration is local
- Sketch of algorithm:
 - Start with seed PR_i values
 - Each page distributes PR_i "credit" to all pages it links to
 - Each target page adds up "credit" from multiple in-bound links to compute PR_{i+1}
 - Iterate until values converge

PageRank in MapReduce

Map: distribute PageRank "credit" to link targets



...

PageRank: Issues

- Is PageRank guaranteed to converge? How quickly?
- What is the "correct" value of α , and how sensitive is the algorithm to it?
- What about dangling links?
- How do you know when to stop?