Graph Algorithms with MapReduce
54230
Jay Urbain, Ph.D.

Credits:
MapReduce: The Definitive Guide, Tom White
Jeffery Dean and Sanjay Chemawat. MapRecuce

Jimmy Lin and Chris Dyer. Data Intensive Text Processing with
MapReduce

Today’s Topics

* Introduction to graph algorithms and graph representations
* Single Source Shortest Path (SSSP) problem

— Refresher: Dijkstra’s algorithm

— Breadth-First Search with MapReduce
 PageRank

What's a graph?

e G=(V,E), where
— V represents the set of vertices (nodes)
— E represents the set of edges (links)
— Both vertices and edges may contain additional information
e Different types of graphs:
— Directed vs. undirected edges
— Presence or absence of cycles
* Graphs are everywhere:
— Hyperlink structure of the Web
— Physical structure of computers on the Internet
— Interstate highway system
— Social networks

Some Graph Problems

Finding shortest paths

— Routing Internet traffic and UPS trucks
Finding minimum spanning trees

— Telco laying down optical fiber

Finding Max Flow

— Airline scheduling

|dentify “special” nodes and communities
— Breaking up terrorist cells, spread of avian flu
Bipartite matching

— Monster.com, Match.com

PageRank, HITS, EdgeRank

Graphs and MapReduce

e Graph algorithms typically involve:
— Performing computation at each node

— Processing node-specific data, edge-specific data, and link
structure

— Traversing the graph in some manner

* Key questions:
— How do you represent graph data in MapReduce?
— How do you traverse a graph in MapReduce?

Representation Graphs

 G=(V,E)

— A poor representation for computational purposes
 Two common representations

— Adjacency matrix

— Adjacency list

Adjacency Matrices

e Represent a graph as an n x n square matrix M

~n=1V|

— M; =1 means a link from node i to

112,34
1,010 1
21011
3/0(1(010
4 1/0(1]0

Adjacency Matrices: Critique

 Advantages:

— Naturally encapsulates iteration over nodes

— Rows and columns correspond to inlinks and outlinks
 Disadvantages:

— Lots of zeros for sparse matrices

— Lots of wasted space

Adjacency Lists

 Take adjacency matrices... and throw away all the zeros
 Represent only outlinks from a node

BULU RS
2:1,3,4
21011-’3:w
3/0[1]/0]0 4:1,3
al1]lo0l1]o0

Adjacency Lists: Critique

* Advantages:

— Much more compact representation

— Easy to compute over out-links

— Graph structure can be broken up and distributed
 Disadvantages:

— More difficult to compute over in-links

Single Source Shortest Path

* Problem: find shortest path from a source node to one or
more target nodes

e First, a refresher: Dijkstra’s Algorithm

Dijkstra’s Algorithm Example

»
'%w(

2

Dijkstra’s Algorithm Example

B
@Y\(

‘ 2

Dijkstra’s Algorithm Example

4
@i\%

—@

Dijkstra’s Algorithm Example

Q@

»
S|

O—

Dijkstra’s Algorithm Example

»
@i\(

O—

Dijkstra’s Algorithm Example

()

»
@i\(

O—C

Single Source Shortest Path

Problem: find shortest path from a source node to one or
more target nodes

Single processor machine: Dijkstra’s Algorithm
MapReduce: parallel Breadth-First Search (BFS)

Finding the Shortest Path

* First, consider equal edge weights
e Solution to the problem can be defined inductively
* Here’s the intuition:

— DistanceTo(startNode) =0

— For all nodes n directly reachable from startNode,
DistanceTo(n) =1

— For all nodes n reachable from some other set of nodes S,
DistanceTo(n) = 1 + min(DistanceTo(m), m € S)

From Intuition to Algorithm

A map task receives
— Key: node n

— Value: D (distance from start), points-to (list of nodes
reachable from n)

 Vp € points-to: emit (p, D+1)

 The reduce task gathers possible distances to a given p and
selects the minimum one

Multiple Iterations Needed

* This MapReduce task advances the “known frontier” by one
hop

— Subsequent iterations include more reachable nodes as
frontier advances

— Multiple iterations are needed to explore entire graph
— Feed output back into the same MapReduce task
e Preserving graph structure:
— Problem: Where did the points-to list go?
— Solution: Mapper emits (n, points-to) as well

Visualizing Parallel BFS

Termination

 Does the algorithm ever terminate?

— Eventually, all nodes will be discovered, all edges will be
considered (in a connected graph)

e When do we stop?

Weighted Edges

 Now add positive weights to the edges
e Simple change: points-to list in map task includes a weight w
for each pointed-to node
— emit (p, D+w,) instead of (p, D+1) for each node p

 Does this ever terminate?
— Yes! Eventually, no better distances will be found. When
distance is the same, we stop

— Mapper should emit (n, D) to ensure that “current
distance” is carried into the reducer

Graph
a:b, c
b:c, d
C:
d:
e:
Mapper (a, (0, (b,c)))
Emit(b, (1, (c,d)))
Emit(c, (1, ()))

Reducer (b, (1, (c,d)))
(b,1)<-min(b,1)
output(b, (1, (c,d)))

Reducer (¢, (1, ())
(c,1)<- min(c,1)
output(c, (1, ()))

Mapper (b, (1, (c,d)))
Emit(c, (2, ()
Emit(d, (2, ()))

Reducer (¢, (2, ()
(c,1)<- min(c,2)
// no output

Reducer (d, (2, ()
// no output
(d,1)<- min(d,2)
// no output

Comparison to Dijkstra

e Dijkstra’s algorithm is more efficient

— At any step it only pursues edges from the minimum-cost
path inside the frontier

 MapReduce explores all paths in parallel
— Divide and conquer
— Throw more hardware at the problem!

General Approach

MapReduce is adept at manipulating graphs

— Store graphs as adjacency lists
Graph algorithms with MapReduce:

— Each map task receives a node and its outlinks

— Map task compute some function of the link structure,
emits value with target as the key

— Reduce task collects keys (target nodes) and aggregates

Iterate multiple MapReduce cycles until some termination
condition:

— Remember to “pass” graph structure from one iteration
to next

Random Walks Over the Web

Model:

— User starts at a random Web page

— User randomly clicks on links, surfing from page to page
What’s the amount of time that will be spent on any given
page?

This is PageRank

PageRank: Visually

[]
N2
? en.wikipedia.org
— |
T — g i
o o

s

PageRank

Initially developed at Stanford University by Google founders,
Larry Page and Sergey Brin, in 1995.

Program implemented by Google to rank any type of recursive
“documents” using MapReduce.

Led to a functional prototype named Google in 1998.

Still provides an important function for Google's web search
tools.

PageRank

* Assume a small universe of four web pages: A, B, Cand D. The
initial approximation of PageRank would be evenly divided
between these four documents.

 Each document would begin with an estimated PageRank of
0.25.

* If the only links in the system were from pages B, C,
and D to A, each link would transfer 0.25 PageRank to A upon
the next iteration, for a total of 0.75.

PR(A) = PR(B) + PR(C) + PR(D).

PageRank: Defined

* Given page x with in-bound links t,...t , where
— C(t) is the out-degree of t
— o is probability of random jump
— N is the total number of nodes in the graph

 We can define PageRank as: PR(1)

1 n
Q - PR(x) = a(ﬁj +(1— 05);)

PageRank

Simulates a “random-surfer”
Begins with pair (URL, list-of-URLs)
Maps to (URL, (PR, list-of-URLs))

Maps again taking above data, and for each u in list-of-URLs
returns (u, PR/|list-of-URLs|), as well as (u, new-list-of-URLs)

Reduce receives (URL, list-of-URLs), and many (URL, value)
pairs and calculates (URL, (new-PR, list-of-URLs))

Computing PageRank

* Properties of PageRank
— Can be computed iteratively
— Effects at each iteration is local
e Sketch of algorithm:
— Start with seed PR; values
— Each page distributes PR, “credit” to all pages it links to

— Each target page adds up “credit” from multiple in-bound
links to compute PR,

— |terate until values converge

PageRank in MapReduce

Map: distribute PageRank “credit” to link targets

N\

Reduce: gather up PageRank “credit” from multiple sources

to compute new PageRank value

N

/

NN

e

lterate until
convergence

PageRank: Issues

|s PageRank guaranteed to converge? How quickly?

What is the “correct” value of ¢, and how sensitive is the
algorithm to it?

What about dangling links?
How do you know when to stop?

