
Graph Algorithms with MapReduce
S4230

Jay Urbain, Ph.D.

Credits:
•MapReduce: The Definitive Guide, Tom White
•Jeffery Dean and Sanjay Chemawat. MapRecuce
•Jimmy Lin and Chris Dyer. Data Intensive Text Processing with
MapReduce

Today’s Topics

• Introduction to graph algorithms and graph representations

• Single Source Shortest Path (SSSP) problem

– Refresher: Dijkstra’s algorithm

– Breadth-First Search with MapReduce

• PageRank

Graphs

SSSP

PageRank

What’s a graph?

• G = (V,E), where
– V represents the set of vertices (nodes)

– E represents the set of edges (links)

– Both vertices and edges may contain additional information

• Different types of graphs:
– Directed vs. undirected edges

– Presence or absence of cycles

• Graphs are everywhere:
– Hyperlink structure of the Web

– Physical structure of computers on the Internet

– Interstate highway system

– Social networks

Some Graph Problems

• Finding shortest paths

– Routing Internet traffic and UPS trucks

• Finding minimum spanning trees

– Telco laying down optical fiber

• Finding Max Flow

– Airline scheduling

• Identify “special” nodes and communities

– Breaking up terrorist cells, spread of avian flu

• Bipartite matching

– Monster.com, Match.com

• PageRank, HITS, EdgeRank

Graphs and MapReduce

• Graph algorithms typically involve:

– Performing computation at each node

– Processing node-specific data, edge-specific data, and link

structure

– Traversing the graph in some manner

• Key questions:

– How do you represent graph data in MapReduce?

– How do you traverse a graph in MapReduce?

Representation Graphs

• G = (V, E)

– A poor representation for computational purposes

• Two common representations

– Adjacency matrix

– Adjacency list

Adjacency Matrices

• Represent a graph as an n x n square matrix M

– n = |V|

– Mij = 1 means a link from node i to j

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 0 1 0 0

4 1 0 1 0

1

2

3

4

Adjacency Matrices: Critique

• Advantages:

– Naturally encapsulates iteration over nodes

– Rows and columns correspond to inlinks and outlinks

• Disadvantages:

– Lots of zeros for sparse matrices

– Lots of wasted space

Adjacency Lists

• Take adjacency matrices… and throw away all the zeros

• Represent only outlinks from a node

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 0 1 0 0

4 1 0 1 0

1: 2, 4

2: 1, 3, 4

3: 1

4: 1, 3

Adjacency Lists: Critique

• Advantages:

– Much more compact representation

– Easy to compute over out-links

– Graph structure can be broken up and distributed

• Disadvantages:

– More difficult to compute over in-links

Single Source Shortest Path

• Problem: find shortest path from a source node to one or

more target nodes

• First, a refresher: Dijkstra’s Algorithm

Dijkstra’s Algorithm Example

0

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

10

5

∞∞∞∞

∞∞∞∞

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

14

7

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

13

7

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

9

7

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

9

7

10

5

2 3

2

1

9

7

4 6

Single Source Shortest Path

• Problem: find shortest path from a source node to one or

more target nodes

• Single processor machine: Dijkstra’s Algorithm

• MapReduce: parallel Breadth-First Search (BFS)

Finding the Shortest Path

• First, consider equal edge weights

• Solution to the problem can be defined inductively

• Here’s the intuition:

– DistanceTo(startNode) = 0

– For all nodes n directly reachable from startNode,

DistanceTo(n) = 1

– For all nodes n reachable from some other set of nodes S,

DistanceTo(n) = 1 + min(DistanceTo(m), m ∈ S)

From Intuition to Algorithm

• A map task receives

– Key: node n

– Value: D (distance from start), points-to (list of nodes

reachable from n)

• ∀p ∈ points-to: emit (p, D+1)

• The reduce task gathers possible distances to a given p and

selects the minimum one

Multiple Iterations Needed

• This MapReduce task advances the “known frontier” by one

hop

– Subsequent iterations include more reachable nodes as

frontier advances

– Multiple iterations are needed to explore entire graph

– Feed output back into the same MapReduce task

• Preserving graph structure:

– Problem: Where did the points-to list go?

– Solution: Mapper emits (n, points-to) as well

Visualizing Parallel BFS

1
2

2 2

3

3

3

3

4

4

Termination

• Does the algorithm ever terminate?

– Eventually, all nodes will be discovered, all edges will be

considered (in a connected graph)

• When do we stop?

Weighted Edges

• Now add positive weights to the edges

• Simple change: points-to list in map task includes a weight w

for each pointed-to node

– emit (p, D+wp) instead of (p, D+1) for each node p

• Does this ever terminate?

– Yes! Eventually, no better distances will be found. When

distance is the same, we stop

– Mapper should emit (n, D) to ensure that “current

distance” is carried into the reducer

Graph

• a: b, c

• b: c, d

• c:

• d:

• e:

Mapper (a, (0, (b,c)))

Emit(b, (1, (c,d)))

Emit(c, (1, ()))

…

Reducer (b, (1, (c,d)))

(b,1)<-min(b,1)

output(b, (1, (c,d)))

Reducer (c, (1, ())

(c,1)<- min(c,1)

output(c, (1, ()))

Mapper (b, (1, (c,d)))

Emit(c, (2, ()))

Emit(d, (2, ()))

…

Reducer (c, (2, ()))

(c,1)<- min(c,2)

// no output

Reducer (d, (2, ()))

// no output

(d,1)<- min(d,2)

// no output

Comparison to Dijkstra

• Dijkstra’s algorithm is more efficient

– At any step it only pursues edges from the minimum-cost

path inside the frontier

• MapReduce explores all paths in parallel

– Divide and conquer

– Throw more hardware at the problem!

General Approach

• MapReduce is adept at manipulating graphs

– Store graphs as adjacency lists

• Graph algorithms with MapReduce:

– Each map task receives a node and its outlinks

– Map task compute some function of the link structure,
emits value with target as the key

– Reduce task collects keys (target nodes) and aggregates

• Iterate multiple MapReduce cycles until some termination
condition:

– Remember to “pass” graph structure from one iteration
to next

Random Walks Over the Web

• Model:

– User starts at a random Web page

– User randomly clicks on links, surfing from page to page

• What’s the amount of time that will be spent on any given

page?

• This is PageRank

PageRank: Visually

www.cnn.com

en.wikipedia.org

www.nytimes.com

• Initially developed at Stanford University by Google founders,

Larry Page and Sergey Brin, in 1995.

• Program implemented by Google to rank any type of recursive

“documents” using MapReduce.

• Led to a functional prototype named Google in 1998.

• Still provides an important function for Google's web search

tools.

PageRank

• Assume a small universe of four web pages: A, B, C and D. The

initial approximation of PageRank would be evenly divided

between these four documents.

• Each document would begin with an estimated PageRank of

0.25.

• If the only links in the system were from pages B, C,

and D to A, each link would transfer 0.25 PageRank to A upon

the next iteration, for a total of 0.75.

PageRank

PageRank: Defined
• Given page x with in-bound links t1…tn, where

– C(t) is the out-degree of t

– α is probability of random jump

– N is the total number of nodes in the graph

• We can define PageRank as:
∑

=

−+

=

n

i i

i

tC

tPR

N
xPR

1)(

)(
)1(

1
)(αα

X

ti

t1

tn

…

• Simulates a “random-surfer”

• Begins with pair (URL, list-of-URLs)

• Maps to (URL, (PR, list-of-URLs))

• Maps again taking above data, and for each u in list-of-URLs

returns (u, PR/|list-of-URLs|), as well as (u, new-list-of-URLs)

• Reduce receives (URL, list-of-URLs), and many (URL, value)

pairs and calculates (URL, (new-PR, list-of-URLs))

PageRank

Computing PageRank

• Properties of PageRank

– Can be computed iteratively

– Effects at each iteration is local

• Sketch of algorithm:

– Start with seed PRi values

– Each page distributes PRi “credit” to all pages it links to

– Each target page adds up “credit” from multiple in-bound

links to compute PRi+1

– Iterate until values converge

PageRank in MapReduce

Map: distribute PageRank “credit” to link targets

...

Reduce: gather up PageRank “credit” from multiple sources

to compute new PageRank value

Iterate until

convergence

PageRank: Issues

• Is PageRank guaranteed to converge? How quickly?

• What is the “correct” value of α, and how sensitive is the

algorithm to it?

• What about dangling links?

• How do you know when to stop?

